8,512 research outputs found

    Thematic mapper performance

    Get PDF
    The thematic mapper primarily and its difference from MSS is reviewed. The TM has 30 meter resolution and the MSS has 80 meter resolution. This provides on agriculture an ability to accurately classify 10 acre fields with the TM versus 70 acre fields with the MSS data. There are six reflected light bands in the thematic mapper. Two bands are a new spectral region out in the IR, the shortwave IR region, as opposed to MSS's four reflected light bands. Four thematic mapper reflected light bands in the visible portion of the spectrum are designated to enhance the classification capability. The TM has better signal-to-noise ratio performance and radiometric sensitivity. The scan efficiency is increased through the use of bidirectional scanning, which gives a scan efficiency of 85% versus 45% with the multispectral scanner and more detectors per band. Greater encoding resolution is obtained in the multiplexer, 8 bit resolution versus 6 bits for MSS

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration

    Activity autocorrelation in financial markets. A comparative study between several models

    Full text link
    We study the activity, i.e., the number of transactions per unit time, of financial markets. Using the diffusion entropy technique we show that the autocorrelation of the activity is caused by the presence of peaks whose time distances are distributed following an asymptotic power law which ultimately recovers the Poissonian behavior. We discuss these results in comparison with ARCH models, stochastic volatility models and multi-agent models showing that ARCH and stochastic volatility models better describe the observed experimental evidences.Comment: 15 pages, 4 figure

    Asymptotics of 4d spin foam models

    Full text link
    We study the asymptotic properties of four-simplex amplitudes for various four-dimensional spin foam models. We investigate the semi-classical limit of the Ooguri, Euclidean and Lorentzian EPRL models using coherent states for the boundary data. For some classes of geometrical boundary data, the asymptotic formulae are given, in all three cases, by simple functions of the Regge action for the four-simplex geometry.Comment: 10 pages, Proceedings for the 2nd Corfu summer school and workshop on quantum gravity and quantum geometry, talk given by Winston J. Fairbair

    Non-Cointegration and Econometric Evaluation of Models of Regional Shift and Share

    Get PDF
    This paper tests for cointegration between regional output of an industry and national output of the same industry. An equilibrium economic theory is presented to argue for the plausibility of cointegration, however, regional economic forecasting using the shift and share framework often acts as if cointegration does not exist. Data analysis on broad industrial sectors for 20 states finds very little evidence for cointegration. Forecasting models with and without imposing cointegration are than constructed and used to forecast out of sample. The simplest, non-cointegrating models are the best.

    Trading activity as driven Poisson process: comparison with empirical data

    Full text link
    We propose the point process model as the Poissonian-like stochastic sequence with slowly diffusing mean rate and adjust the parameters of the model to the empirical data of trading activity for 26 stocks traded on NYSE. The proposed scaled stochastic differential equation provides the universal description of the trading activities with the same parameters applicable for all stocks.Comment: 9 pages, 5 figures, proceedings of APFA

    Quantum geometry and black hole entropy: inclusion of distortion and rotation

    Full text link
    Equilibrium states of black holes can be modelled by isolated horizons. If the intrinsic geometry is spherical, they are called type I while if it is axi-symmetric, they are called type II. The detailed theory of geometry of quantum type I horizons and the calculation of their entropy can be generalized to type II, thereby including arbitrary distortions and rotations. The leading term in entropy of large horizons is again given by 1/4th of the horizon area for the same value of the Barbero-Immirzi parameter as in the type I case. Ideas and constructions underlying this extension are summarized.Comment: Text based on parallel talk given at the VI Mexican School on Gravitation and Mathematical Physics: ``Approaches to Quantum Gravity'', held in Playa del Carmen, Mexico, in November of 2004; IGPG preprint number added; metadata abstract correcte

    Maximizing the benefits and minimizing the risks of intervention programs to address micronutrient malnutrition: symposium report.

    Get PDF
    Interventions to address micronutrient deficiencies have large potential to reduce the related disease and economic burden. However, the potential risks of excessive micronutrient intakes are often not well determined. During the Global Summit on Food Fortification, 9-11 September 2015, in Arusha, a symposium was organized on micronutrient risk-benefit assessments. Using case studies on folic acid, iodine and vitamin A, the presenters discussed how to maximize the benefits and minimize the risks of intervention programs to address micronutrient malnutrition. Pre-implementation assessment of dietary intake, and/or biomarkers of micronutrient exposure, status and morbidity/mortality is critical in identifying the population segments at risk of inadequate and excessive intake. Dietary intake models allow to predict the effect of micronutrient interventions and their combinations, e.g. fortified food and supplements, on the proportion of the population with intakes below adequate and above safe thresholds. Continuous monitoring of micronutrient intake and biomarkers is critical to identify whether the target population is actually reached, whether subgroups receive excessive amounts, and inform program adjustments. However, the relation between regular high intake and adverse health consequences is neither well understood for many micronutrients, nor do biomarkers exist that can detect them. More accurate and reliable biomarkers predictive of micronutrient exposure, status and function are needed to ensure effective and safe intake ranges for vulnerable population groups such as young children and pregnant women. Modelling tools that integrate information on program coverage, dietary intake distribution and biomarkers will further enable program makers to design effective, efficient and safe programs

    Value at Risk models with long memory features and their economic performance

    Get PDF
    We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving component and information on recent aggregate returns in established quantile (auto) regression models. These models are compared on their economic performance, and also on metrics of first-order importance such as violation ratios. By better economic performance, we mean that changes in the VaR forecasts should have a lower variance to reduce transaction costs and should lead to lower exceedance sizes without raising the average level of the VaR. We find that, in combination with a targeted estimation strategy, our proposed models lead to improved performance in both statistical and economic terms
    corecore